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Lunar orbital theory
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The present and expected accuracies of lunar laser ranging imply that the gravitational
theory of the motion of the Moon should be consistent with at least the same precision.
Ttis therefore necessary to aim atinternal relative consistencies better than 10— or 1012,

Several theories based on numerical integration have been built and are currently
being used in reducing the lunar laser ranging data. However, literal or semi-literal
analytical theories have several important advantages over purely numerical ephe-
merides. This is why important programmes of building such theories are now in
progress, particularly in the U.S.A. and in France.

Characteristics and the state of advancement of these theories will be reviewed and
the possibility of constructing an analytical theory with the above mentioned accuracy
discussed.
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INTRODUCTION

The theory of the motion of the centre of mass of the Moon has always been, even in the early
history of modern astronomy, a major challenge to mathematicians. From Isaac Newton to
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Ernest Brown, the accuracy of lunar theory has always been somewhat behind the actual
precision of observations.

The last complete work published before the space age is the Tables of the motion of the Moon by
Ernest Brown (1919). This theory is still used in astronomical ephemerides with some minor
improvements introduced in 1960 and later (H.M. Nautical Almanac Office 1974). It is of some
interest to analyse its accuracy.

Brown’s theory includes a very accurate solution of the lunar main problem (the motion of the
Moon disturbed by the Sun, assuming that the Earth moves on a keplerian ellipse around the
Sun).This theory, together with the corrections introduced in his expressions by Eckert, Walker &
Eckert (1966), has been shown by Henrard (1973) to have an accuracy of about 0.01” in longitude
and latitude and 0.0001” in parallax. This represents a precision of about 20m in all three

/|

coordinates, provided that the constants of integration are correct.

The perturbations due to the Earth flattening are less precise (Henrard 1973). A difference of
0.07” can be found in longitude and latitude and probably corresponding inaccuracies exist in
distances. But the worst part of the theory is the evaluation of planetary perturbations. Inde-
pendently of biases due to incorrect constants of integration, a comparison of the improved lunar
ephemeris with a numerical integration showed differences in position of the Moon of up to
500m (Mulholland 1969). Inaccuracies in the values of fundamental or integration constants
may increase this number, especially in considering the secular and long periodic terms.
Mulholland (1972) quotes the probable presence of a 8” per century secular error in longitude
which brings the overall accuracy of this ephemeris up to more than 1 or even 2km.

On the other hand, lunar-laser ranging gives distances between a point on the Earth and a
point on the Moon to 10cm and a limiting precision of 3 cm is expected to be reached in a few
years. It is clear that such a precision is totally inconsistent with the accuracy of Brown’s Lunar
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566 J.KOVALEVSKY

theory, even in its improved form. The observed minus computed quantities in the right-hand
members of the equations of condition represent only the inaccuracy of the ephemerides, and
cannot be used for the determination of other parameters present in the observed quantities.
Actually, it is desirable that the internal consistency of the basic theory should be at least one
order of magnitude better than the internal precision of the observations. This permits one to
ignore the noise of the theory in comparison to the random noise of the observations. Of course,
the various parameters entering in the theory cannot be known sufficiently well and have to be
determined for the process of comparison of the observation to the theory. This can be achieved
with such a precise ephemeris, provided that partial derivatives also exist for the same period of
time.

NUMERICAL INTEGRATIONS

Practically, this means that, for all times of observation — that is now about ten years —we need
to have a consistent ephemeris with a precision of 1 cm, and shall soon need 1 mm. In relative
precision, this is of the order of 10~ to 10~2, This is why, since the very beginning of the lunar-
laser ranging experiment, the lunar ephemerides had to be so much better than those available
in the Astronomical Ephemeris that something else had to be done. Numerical integration of the
motion of the Moon, taking into account all the forces due to the non-spherical Earth, the Sun
and all the major planets, with a sufficient number of significant figures, was the only possible
method. Actually, it is the numerical solution of the general dynamical problem of the Solar
System that is required, with an emphasis on the motions of the Moon.

This has been achieved by several teams in the U.S. Let me quote the work in Naval Weapons
Laboratory using 40 000 optical observations of planets and the Moon made between 1911 and
1969 (Oesterwinter & Cohen 1972). In the J.P.L. the first ephemeris used for Lunar ranging was
LE 16 (Garthwaite, Holdridge & Mulholland 1970), that included the positions of planets taken
in another general integration program (DE 19, Devine 1967), while the source ephemeris for
the Moon was based on Brown-Eckert improved theory. Later, this work was followed by LE 17
and then improved several times. Those specially designed for lunar laser are Lure 1 and Lure 2.
Another series of integrations was performed in the University of Texas. Many of these ephe-
merides were not made available to the general scientific community. But Lure 2, which is based
in particular on all laser observations covering the period August 1969 to June 1974, has been
released at the end of 1974. It is believed (Galame 1975) that its external accuracy is of the order
of a few tens of metres for a period of 10 years. But of course, the internal coherence is much
better.

Many papers were published on various methods of numerical integration. We shall not
discuss them here, and only refer to a recent review paper on this subject (Balmino 1975). Let us
only stress the very great importance of a perfect documentation of all the parameters and
assumptions included explicitly or implicitly in a numerical integration. This is not an easy task,
much more difficult than in the case of analytical theories. Some of the difficulties were recently
analysed by Mulholland (1975).

ANALYTICAL THEORIES

So, numerical integrations, provided that some precautions are taken, can serve as the
theoretical basis for the interpretation of the Lunar laser ranges. However, one needs not only the
ephemeris, but also the partial derivatives with respect to all the parameters of the motion. These


http://rsta.royalsocietypublishing.org/

0
'am \

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Y |

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org
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can be obtained numerically by performing several parallel integrations, as is done in the J.P.L.
But if analytical expressions of these derivatives exist, it is much more efficient to use them. This
has been done in the University of Texas and Joint Institute for Laboratory Astrophysics, and
a detailed discussion of this method was made by O. Calame (1975). Building a new analytical
theory sufficiently precise to become usable in the reduction of lunar distance observations has
therefore become a major goal of celestial mechanics, as the modern aspect of the challenge
quoted in the beginning of this presentation. It became possible to undertake such a work when
sufficiently large and fast computers became available to permit the automatic treatment of large
numerical or literal series that is needed.

The first attempt towards this direction is due to Barton (1966), who developed the disturbing
function of the main lunar problem, and this was followed by various groups using techniques
that were described by Kovalevsky (1968), Deprit (1968) and Rom (1971). Actually, two
approaches to the lunar theory are possible and important efforts have been devoted to each of
them: the literal theory and the semi-numerical theory. Since people have primarily studied the
main problem, as the necessary step before computing other perturbations, we shall first examine
this part of the theory, then conclude by some remarks on planetary and other perturbations.

LITERAL THEORIES — MAIN PROBLEM

In this approach, all parameters are kept in their purely literal form. The only assumption is
that the metric parameters are small quantities and that it is possible to develop the coefficients in
power series of these parameters. The convergence of these power series, as well as that of the
general expressions, is not considered. What is really obtained is a truncated formal solution of
the equations, and it is expected that when numerical values are given to parameters, the
truncated expressions do represent the motion in a sufficiently long interval of time (Poincaré

1893).
All expressions, in the main problem, have the following form:

sin

S =ZXR, (Mo €05 €05 Vs %os Ho) cos (D +iF+i5l+i,1'), (1)

192734
where the summation refers to four indices z.

D, F, | and I’ are the four angular arguments of Delaunay. The expressions R are functions of
the six small parameters. The four first are of the first order: m,, ratio of mean motions, ¢, ¢,, the
mean eccentricities and y, = sin }¢,. The quantities &y = a,f/a’((E—~M)[(E+ M)), where E and
M are the masses of the Earth and of the Moon is of order 2. The last parameter,

. to = tola’(EM[(E2— M?))
is of the fourth order.

The parameters actually used may be sometimes different to these, but for our purpose, this
amounts to the same thing. The last work in this direction is due to Delaunay (1867),who obtained
all terms to the seventh order. For a century, no attempt was made to resume this work.

A remarkably complete work was made in this subject by A.Deprit and his associates,
J. Henrard & A. Rom, using the theory of Lie transforms (Deprit 1969). This work was described
by Henrard (1973) and the series that are obtained are deposited at the U.S. Naval Observatory
(Washington).
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The expressions obtained for the longitude, latitude and parallax of the Moon have approxi-
mately 30 000 terms each. The developments in powers of small parameters are truncated in
such a way that if ¢ is the global order in ¢,, ¢y and y, and ¥ is the global order in m, and al,

one has 26+ < 20

(in case of Delaunay, one had ¢+ < 7).

For numerical applications, these expressions were again truncated on numerical grounds and
finally were kept, all terms having an amplitude of more than 0.00005" in longitude and latitude,
or 0.0000005” in parallax.

This means that, in the present case, there remains a collection of quasi-random periodic terms
of amplitudes less than 10 cm in the position of the Moon. This collection of random noise can
certainly affect atleast one, or possibly two orders of magnitudes more. Consequently, this theory,
as such, does not encompass the specifications stated above for the use in Lunar ranging. At least
two more significant figures are needed in order to be fully consistent within the centrimetre range
required by the observations.

What is not clear, is the damage to the theory introduced by the numerical truncation. But
anyhow, the most difficult problem is to be sure that no term larger than, say, a few millimetres
has been disregarded. One has to study very carefully the apparent convergence of power series
and of periodic terms before being confident in the theory to such an extent.

It is possible, in many cases, to improve the convergence of terms, using the Euler transform.
With this artifice, Henrard (1973) has improved by a factor larger than 100 the main part of the
secular motion of the perigee. However, this does not work for all terms. It seems, therefore, that
some fundamental change in the presentation of terms may be necessary in order to go further
in the precision of such a theory.

A similar literal solution of the main problem of the lunar theory is being constructed at the
Bureau des Longitudes in Paris (Bec, Kovalevsky & Meyer 1973). It is based on a solution by
successive approximations of equations derived from the Lagrange system with a different set of
variables (Chapront & Mangeney 1969). Several approximations have been computed and an
8th-order theory is expected to be soon available. The procedures to improve the theory for very
small terms will have to be completely different: it appears that the type of work necessary to
obtain a large number of very small terms is quite different from the one that is necessary in order
to build the main part of the solution. Divisors will have to be introduced, as well as a semi-
numerical method to compute the small terms and assure the convergence in powers of m,. In
spite of the very large number of supplementary terms to be computed, the millimetre precision
does not seem to be impossible for literal methods, provided that special procedures are adopted
for those terms the derivatives of which do not need to appear in the expression of derivatives.

SEMI-NUMERICAL THEORIES — MAIN PROBLEM

Another possible approach to Lunar theory is to follow the same procedure as Brown & Eckert
and construct a semi-numerical theory. Here, the basic form of the solution is still (1), but the
quantity R; ; ;. ;, is no more expressed analytically in terms of the parameters, but is a number.
This means that the parameters are given some a priori values kept all through the calculations
and that they are not liable to be improved. In order that such theories may still represent a
family of orbits, it is necessary to construct not only the coordinates of the Moon as Fourier series
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LUNAR ORBITAL THEORY 569

of D, F, [ and ', but also the partial derivatives of the coordinates with respect to all the six
parameters mq, €y, €, Yo, % and u, of the theory and eventually, if the parameters are not
sufficiently close to the real ones, the second derivatives.

This task was undertaken in Bureau des Longitudes by M. Chapront-Touzé using again the
same kind of method as in the case of the literal theory (Chapront & Mangeney 1969). The
practical computing procedure, however, is very different and there is a difficulty that does not
appear in the same way in literal theories, and that prevents the terms with small divisors to
converge. This difficulty was overcome by writing the equations for the corrections to the
coeflicients of non-converging terms and neglecting the others (Chapront-Touzé 1974). This new
method proved to be quite efficient in damping out the oscillations of the terms from one iteration
to another.

In a first step, ten iterations were performed. They consisted of a simple integration of the
equations obtained after the substitution in the right-hand members of the preceding iteration
and then of the adjustment of the result to the constants of integration. At this stage, the oscillation
of some terms became the dominant phenomena, so 8 other iterations were made, including the
procedure for the stabilization of long-periodic terms.

The derivatives with respect to the parameters are computed by the same procedure, simply
by writing that any coefficient 4 has the form

4=4,+ % A:isx:b
j=1

where the 8x; are some literal correction to the #» parameters, the squares of these quantities being
neglected.

The final series for the principal part of this theory include terms in longitude and latitude of
the order of 0.0001”. They are, as a rule, closer to the results of Deprit literal solution than to
Brown-Eckert series. However, a couple of differences of the order of 0.01” and some smaller
remain between these theories.

This shows the greatimportance of having simultaneously several theories under formulation in
order to be able to compare them to detect their inaccuracies or to discover the best procedures for
further developments of the rescarch in the field of the lunar theory.

OTHER PERTURBATIONS

The success of the work on the main problem should not conceal the fact that the principal
defect of Brown-Eckert theory lies in the evaluation of other perturbations, especially planetary
perturbations.

In order to do this, it is necessary to start with a good solution of the main problem. This is the
reason why this problem was first studied. Actually only preliminary steps have been taken
towards a systematic study of these perturbations.

In the processs of building their analytical lunar theory, Deprit, Henrard & Rom (1971) have
added to their solution of the main problem, the perturbations due to J,, the main factor of Earth
non-spherical gravitational field (Henrard 1973). Truncation errors can reach 0.005” for some
terms. It results that this part of the theory is not as accurate as the main problem.

Work on the problem of planetary perturbations has not yet—to my knowledge —resulted in
actual expressions. Some partial derivatives of quantities depending on the Moon and necessary
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in the determination of planetary terms were computed by Griffith (1972). Deprit has worked
also on this problem, but did not publish.

Actually, the problem is that one also needs a very complete theory of the motion of planets in
order to get a good precision: as a matter of fact, a major reason of the inadequacy of Brown’s
expressions lies in the fact that the number of terms kept is much too small. It is also to be
remarked that, in the theory of the motion of planets, some second order quasi-resonant terms
are larger than many first order terms. This is why, before attempting to get any serious deter-
mination of the planetary perturbations, one should work on better analytical planetary
theories.

Such a work is presently in progress in Bureau des Longitudes, under the leadership of J.
Chapront. The analytical expressions of such theories are now in an advanced stage of computa-
tion of second and third order terms with respect to planetary masses (Simon & Bretagnon 1975;
Chapront, Bretagnon & Mehl 1975). Methods of computation of negative powers of the distance
between planets are now well established (Abu El Ata & Chapront 1975). It was shown that it is
necessary to prepare the equations in such a way that variables referring to the Moon and those
pertaining to the planets are separated until the integration process (Brown separation). This is
done now, and the equations are written (Chapront & Abu El Ata 1976). The corresponding
series are now being constructed as well from series of H.Chapront-Touzé as from those of
A. Bec.

Although a lot remains to be done, it is expected that this coordinated effort should soon bring
the first new results in the evaluation of planetary perturbations of the Moon.

CONCLUSIONS

Although serious efforts are being made to build new and more precise analytical theories of
the motion of the Moon, there is still a great amount of work to be done before the challenge that
lunar laser techniques have put before celestial mechanics is fully taken up. However, in recent
years, serious progress has been made in the field of the main problem and the planetary perturba-
tions are now also seriously considered by at least one group in the World.

But one may expect that many years will elapse before a complete analytical theory of the
motion of the Moon will reach the precision required for use as reference ephemerides in lunar
laser ranging. Until then, numerical integrations will remain the only possible method to get the
necessary computational data for the analysis of these observations.
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Discussion

C. A. MurrAY (Royal Greenwich Observatory). If we are to determine luni-solar precession from
the observed motion of the Moon’s node it is necessary that the theoretical motion be known
with high accuracy. Can you set an upper limit to any uncertainties in this quantity, particularly
those with long periods?
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J. Kovarevsky. The errors in the theory of the motion of the Moon’s node should certainly be
one order of magnitude less than the accuracy required for the determination of precession.
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